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ABSTRACT
Audio data from a microphone can be a rich source of informa-
tion.The speech and audio processing community has explored us-
ing audio data to detect emotion, depression, Alzheimer’s disease
and even children’s age, weight and height. The mobile commu-
nity has looked at using smartphone based audio to detect cough-
ing and other respiratory sounds and help predict students’ GPA.
However, audio data from these studies tends to be collected in
more controlled environments using well placed, high quality mi-
crophones or from phone calls. Applying these kinds of analyses
to continuous and in-the-wild audio could have tremendous appli-
cations, particularly in the context of health monitoring. As part
of a health monitoring study, we use smartwatches to collect in-
the-wild audio from real patients. In this paper we characterize
the quality of the audio data we collected. Our findings include
that the smartwatch based audio is good enough to discern speech
and respiratory sounds. However, extracting these sounds is diffi-
cult because of the wide variety of noise in the signal and current
tools perform poorly at dealing with this noise. We also find that
the quality of the microphone allows annotators to differentiate
the source of speech and coughing, which adds another level of
complexity to analyzing this audio.

CCS CONCEPTS
• Human-centered computing → Mobile devices; Empirical
studies in ubiquitous and mobile computing;
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1 INTRODUCTION
Audio data from a microphone can be a rich source of information.
The speech and audio processing community has explored using
audio data to detect emotion [19], depression [6, 12], Alzheimer’s
disease [5] and even children’s age, weight and height [9]. The
mobile community has used audio data from smartphones to de-
tect coughing and other respiratory sounds [8, 13] and predict stu-
dents’ GPA [17, 18]. However, these studies tend to use well placed,
high quality microphones and/or more controlled environments.
For example, [12] describes the dataset they use as studio quality
and [8] uses a smartphone as a neck pendant during a short (few
hours) studywhere participants followed their daily routine.While
a shorter, uncontrolled study is more realistic than an in-lab study,
the short duration makes it so that participants likely remain cog-
nizant of the device and of being recorded.

Smartwatches, and wearables in general have potential to make
continuous and in-the-wild sensing much more feasible. Smart-
watches are readily available and come equipped with many dif-
ferent sensors, often including a microphone. Compared to smart-
phones, which may be in a user’s pocket, purse or on a table for
portions of the day, a smartwatch is much more likely to be on
the user’s wrist. This means data from a smartwatch’s sensors is
more likely to reflect the user’s state. Additionally, smartwatches
are much easier to use day after day as compared to other types of
wearable devices (e.g., a chest belt or sensors embedded in cloth-
ing). However, the relatively recent emergence of smartwatches
and the difficulty of conducting in-the-wild studies creates much
uncertainty. It is unclear what kinds of sounds smartwatches will
pick up in in-the-wild environments andwhether these soundswill
be of high enough quality to enable detection of events of interest,
such as speech and coughing.

To answer these questions, we built a system that uses Android
Wear smartwatches to record raw audio and other sensor data from
patientswith chronic lung disease.We recruit patientswith chronic
lung disease because this work is part of a larger study that uses
passive sensor data from smartwatches to monitor these patients.
While we focus on a specific population, which may affect some
of our numbers, we do not think this affects the generality of our
key results. For example, the amount of speech in healthy patients
may be higher than in patients with lung disease who have diffi-
culty breathing. However, our finding that we need more robust
methods for detecting speech from smartwatch based audio still
stands and is relevant to many different applications.
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Figure 1: Flow of data in our data collection system

To our knowledge, we are the first to record raw, unfiltered au-
dio from an in- the-wild smartwatch. We recruited 16 patients to
wear the smartwatch for a three month period while our applica-
tion recorded data. Our findings include that the audio recorded is
of high enough quality to discern speech and respiratory sounds.
However, because our data comes from an in-the-wild environ-
ment and contains a large variety and amount of noise, algorithms
tuned for in-lab studies do not perform well. We find that existing
algorithms for Voice Activity Detection (VAD) and cough detec-
tion have limited accuracy when applied to our data and that ad-
ditional sophistication is required to address the challenges of real
world audio, which could be an interesting avenue for future re-
search. We also find that a surprisingly high proportion of speech
and coughing does not come from the user. These results highlight
two problems that will need to be addressed in order for in-the-
wild audio analysis to become viable. First, we need more robust
methods for automatic event detection such as VAD and cough de-
tection to better handle noisy and inconsistent environments. Sec-
ondly, we need reliable methods for distinguishing the source of
sounds of interest (user vs. someone else).

2 DESIGN
In this section we describe our data collection system and study.

2.1 System
Our data collection framework consists of three main components;
(1) an Android Wear smartwatch, (2) a phone, and (3) a server. The
smartwatch collects sensor data and transmits it to the phone. The
phone receives data from the smartwatch and uploads it to a re-
mote server. Finally, the server stores all uploaded data and makes
data available for processing and analysis. This data flow is shown
in Figure 1.

We use two smartwatch models, the LG Urbane W150 and the
Moto 360 2nd Generation, all running Android 6.0.1. For the smart-
phone, we use either the LG Nexus 5 (Android 6.0.1) or Moto G 3rd
Generation (Android 6.0). The smartphone is equipped with a 5GB
per month data plan and our data collection framework was tuned

to fit within the 5GB per month limit. To prevent users from in-
stalling other applications, which could interferewith our data, bat-
tery and processing requirements estimations, phones are locked
down with a custom launcher and firewall rules.

The smartwatch runs an application that collects sensor data.
The main design consideration for this application is battery life.
To record sensor data, our application must obtain a partial wake
lock from the Android Battery Manager, which prevents the pro-
cessor from entering sleep mode. Continuously holding this wake
lock would drain the battery very quickly. To get around this, we
use duty cycling, i.e., recording for a fixed amount of time and then
sleeping for a fixed amount of time. Through in-lab testing, we
found that for our smartwatches a 20% duty cycling scheme with
a 10 minute interval (record for two minutes, sleep for eight) pro-
vides enough energy savings to last on average 16 hours on battery,
which should be enough to last a full day’s use. After deploying we
found that these battery saving measures were sufficient with the
smartwatches ending 99.9% of days with at least 10% battery re-
maining.

The smartwatch application has a data collection service that
records audio from the microphone as well as data from other sen-
sors. Audio data is sampled at 16 kHz. Unlike regular Android, An-
droid Wear does not support codecs for recording compressed au-
dio. Therefore, we record uncompressed PCM audio and convert it
to MP3 using a copy of the LAME MP3 encoder that we cross com-
pile and bundle with our application. Although lossy compression
such as MP3 is undesirable, it is necessary to make data transfers
feasible and our annotation and automatedmethods do not suggest
that lossy compression is an issue.

Data transfer from the watch to the phone occurs when the
watch is placed on charging. The phone application receives sen-
sor data from the smartwatch over Bluetooth and automatically
uploads data to a remote server once per day.

It is worth mentioning that for a practical, production-ready ap-
plication, transmitting raw audio is not required. Ideally, prepro-
cessing on the phone or smartwatch would either extract events of
interest or audio features that are transmitted to the remote server
rather than raw audio. However, for our research, we need to be
able to evaluate the accuracy of preprocessing and to do that, we
need the raw audio.

2.2 Study Participants
To recruit participants for the study, we approach patients at three
different hospitals and ask them to enroll in a 3 month long study.
During the study they are asked to wear a smartwatch that pas-
sively collects accelerometer, gyroscope, heart rate and audio data.
Patients are informed of the study, its goals, and the invasive na-
ture of the data that we are collecting. We also inform users of the
security and privacy measures we are required by the ethics com-
mittees to take, such as keeping all data and data transmissions
encrypted and stored on privately owned and hosted servers. The
biggest hurdle in recruiting users is the privacy concerns associ-
ated with continuous recording of audio. Despite the privacy con-
cern, we have been able to find patients who agree to participate
in the study.
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Patients who agree to participate are shown how to use the
smartwatch and smartphone. We include features giving patients
some control over their data in order to ease some privacy con-
cerns and make it more likely that patients will agree to partici-
pate. Patients are able to stop the smartwatch from recording for a
short time and on the smartphone selectively listen to and delete
recorded audio. They are advised that an optimal way to use the
system is to place the smartwatches charging cradle and the smart-
phone on their bedside table and plug them both in.

3 ANALYSIS AND RESULTS
To date, we have collected over 4,100 hours of audio from 15 pa-
tients. This data spans over 1059 days with an average of 75 days
per patient and 3.9 hours of audio per day. Patients typically put
on the smartwatch between 6am and 9am and take it off between
8pm and 10pm. Although the trial was 90 days long, some patients
wore the device longer than 90 days due to difficulties scheduling
their off-boarding and some ended their trial early but gave us per-
mission to use the data collected so far.

Based on manual annotation, we characterize the audio data in
terms of amount of silence, speech and respiratory sounds. But
manual annotation of audio is expensive, time consuming and in-
feasible for a study of even our scale, so for speech and respiratory
sounds, we also evaluate how well existing tools can detect these
sounds.

3.1 Manual Annotation
To annotate audio, we recruit volunteers to listen through the au-
dio and label speech and respiratory sounds. Because we are work-
ing with patients and sensitive audio, we have strict restriction
on how we store and use this data. For example, we are required
to host the data ourselves on servers within our province. These
regulations help keep our patients data secure but also mean we
cannot crowd-source annotation.

Manual annotation is expensive and time consuming, sowewant
to maximize the time our annotators spend listening to useful au-
dio. We do this by removing silent portions of the audio. Our duty
cycling means that our audio files as recorded are 2 minutes long.
We apply a simple silence detection algorithm to these files that
first applies an A-Weighting [4] to the audio signal, followed by a
low-pass filter and a moving average. The result of the moving av-
erage is compared to a preset threshold to determine if the audio
segment contains silence. Using this silence detection algorithm,
we find that on average 38.3% of the audio data collected from
users contains non-silence and the remaining 61.7% is silence. This
proportion ranged from a maximum of 59.3% non-silence down
to 20.3% across users who participated in the study. We take non-
silence segments of audio and stitch them into longer audio files so
that annotators are not constantly loading the next file. This map-
ping of two minute files to non-silent segments to long files for
annotation is maintained so that labels created during annotation
can be mapped back to the original two minute file.

During our annotation, we also ask annotators to label cough-
ing, speech, throat clearing, sneezing, sniffling, labored breathing,
forced expiration andwheezing. Each label consists of a confidence
(low, medium, high) and source (patient, 2nd person, TV/radio).

The confidence indicates how sure the annotator is that the label
is correct. After a bit of practice, annotators are able to learn the
patient’s voice in order to identify the source of the event of in-
terest. Contextual information is often useful in identifying non-
speech events. For example, if the patient is speaking, stops speak-
ing, coughs and then resumes speaking this is an indication that it
was the patient coughing. Additionally, over time annotators were
able to learn how the patients coughs sound. The two events of in-
terest that we have found the most occurrences of are speech and
cough, which is why we focus on these two for our analysis.

Speech. To estimate how much of our audio data is speech, we
randomly select one week of audio from eight patients fromwhich
speech will be analyzed. After removing silence, we are left with
an average of 12.20 hours of audio (4.53 hours SD) per user, which
annotators listened to and labeled.

We found that overall, 59% of the non-silent audio was speech.
Of the speech, 17.66% was from the user, 17.64% was from another
person and 54.35% was from TV/radio. While these proportions
may vary between users and populations, it does show that a sig-
nificant portion of speech comes from non-users. This also poses a
challenge in using smartwatch based audio as speech from the pa-
tient will have to be differentiated from speech coming from other
sources.

Respiratory Sounds. Detecting respiratory sounds such as cough-
ing is highly relevant tomonitoring lung disease and possibly other
health conditions. After annotating 53 hours of silence-removed
audio across 7 users we discovered 750 coughs, 238 throat clears
and 210 other sounds such as labored breathing, sneezing and snif-
fling. Figure 2 shows the proportion of labels at each confidence
level. While the confidence level is a subjective measure, the pro-
portion of labels at each confidence level can serve as a rough ap-
proximation of how clear sounds are in the recorded audio and how
confident humans are that they can recognize the sounds. Just over
67% of the annotations were made with high confidence, which
shows that humans are fairly confident that they can recognize
our sounds of interest in smartwatch based audio.

Looking at the source of coughs, we found that 11.4% of the
coughs are not from the patient. This was a surprisingly high pro-
portion given that our patients have a chronic lung disease. When
trying to monitor coughing, the proportion of coughs coming from
other people may be a source of error worth addressing. As men-
tioned briefly, we collect other sensor data in addition to audio. It
is possible that accelerometer and gyroscope data may be helpful
in differentiating the source of coughs.

3.2 Automatic Detection
Wewanted to evaluate howwell existing tools for automatic sound
classification perform on our real world data. These tools are often
developed and evaluated in controlled environments so validating
them is essential if they are to be used in health monitoring ap-
plications. We look at tools for detecting speech, known as Voice
Activity Detection (VAD), and borrow from existing literature to
build a cough detection model.

1https://webrtc.org

https://webrtc.org
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Figure 2: Proportion of annotations at the three confidence
levels

Speech. To evaluate speech detection, we look VAD tools from
WebRTC’s1, Loizou [10], Giannakopoulos2, and LIUM SpkDiariza-
tion [11]. WebRTC’s VAD has a parameter to control the aggres-
siveness of the VAD that ranges from 0 to 3, where 0 is the least
aggressive about filtering out non-speech and 3 is the most aggres-
sive. The proportion of audio each of these VAD tools classify as
speech is shown in Table 1. Interestingly, while speech makes up
59% of the audio, most of these tools were too lenient and classi-
fied around 90% of audio as speech (the exception being VAD(2) at
80% and VAD(3) being far too strict at 2%). One explanation for this
is that these tools were developed and tested on more consistent
audio sources. LIUM for example, was developed for TV and radio
broadcasts, [10] used curated dataset of in-lab recordings and [15]
assumes that the level of background noise is low.

It is clear that these tools cannot be used as-is on real world
smartwatch based audio. Further sophistication is required to not
only filter the vast types of noise present in real world audio but
also differentiate speech from different sources.

Respiratory Sounds. To build an automatic cough detector, we
take inspiration from [2], [14] and [1]. We use similar features and
machine learning methods as these studies. For feature extraction,
we use OpenSMILE [3] to extract spectral features, zero crossing
rate, signal energy and Mel-Frequency Cepstral Coefficients from
our audio signal using 0.5 second windows with a 0.25 second step.
These features, alongwith annotations from volunteers, are used to
train a random forest with an 80/20 random split for training/test-
ing. The average classification accuracy over 100 iterations using
monte carlo cross-validation is shown as a confusion matrix in Fig-
ure 3.

2http://www.mathworks.com/matlabcentral/fileexchange/
28826-silence-removal-in-speech-signals

Method Speech Proportion (%)
WebRTC(0) 96
WebRTC(1) 95
WebRTC(2) 80
WebRTC(3) 2
Loizou [10] 91
Giannakopoulos2 92
LIUM 89
Annotation 59

Table 1: Proportion of speech in our non-silence audio data
as estimated by different tools and frommanual annotation.
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Figure 3: Confusionmatrix for detecting coughing and clear-
ing throat sounds using a Random Forest.

Our feature selection and classifier is inspired by [2], [14] and
[1]. However, our classifier does not perform as well as these pre-
vious studies. For example, [1], has a sensitivity of 92.8% and speci-
ficity of 97.5% in detecting coughs. Our implementation has a slightly
lower sensitivity of 91.43% and significantly lower specificity of
83.83%. Similar to speech, we think this is because these studies
use higher quality microphones in more controlled environments.
Additionally, in these controlled environments, it is unlikely that
there are coughs from other sources so these studies do not attempt
to differentiate coughs from the user vs other people.

As discovered through manual annotation, 11.4% of coughs did
not come from the user. For the cough classifier, we do not take
this into account. Coughs are labeled and classified as coughs re-
gardless of the source. However, for real applications of cough de-
tection, this may be a source of error worth addressing. Additional
classifiers could be used to determine whether a given cough came
from the user or another person.

From our annotation, it is clear that cough and speech signals
are present in the audio. The challenge is the significant amount
of other noise present in the signal. This shows again, that more
sophisticated methods are required to filter noise and to determine
whether the user or someone else is coughing.

http://www.mathworks.com/matlabcentral/fileexchange/28826-silence-removal-in-speech-signals
http://www.mathworks.com/matlabcentral/fileexchange/28826-silence-removal-in-speech-signals
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4 SUMMARY AND DISCUSSION
We find that the quality of audio from the smartwatch is good
enough for humans to be able to detect speech and respiratory
sounds. Furthermore, the quality is even high enough discern the
source of speech and respiratory sounds. We also find that in real-
world audio there is a lot of noise which makes automatic classi-
fication more challenging. However, we feel that borrowing more
from the audio processing community and utilizing advances in
machine learning will yield solutions more robust to the kinds of
noise seen in real-world audio.

We also saw that simple detection may not be sufficient. We
found that 54% of speech in our data was from a TV or radio. In
an in-lab, it is unlikely that there would be any sound from a TV.
The exact proportions we report are not as important as the fact
that there is a significant amount of unexpected sound. The exact
proportions can vary based on the population or even location. For
example, teenagerswho spend a large portion of their day at school
may have a lower proportion of TV sounds and higher proportion
of “other speaker” sounds. Regardless of the proportion of sounds,
for real-world sensing applications, other sources of sound have
to be considered and adjusted for. The task of identifying who is
speaking when in an audio signal, known as speaker diarization, is
a known challenge and will be highly important to wearable audio
sensing. However, identifying the source of non-speech sounds,
such as coughs, is a novel problem and may be relevant to moni-
toring various diseases. In a wearable context, the tasks of speaker
diarization and non- speech diarization may be able to leverage
other available sensors such as the accelerometer and gyroscope
to make smarter decisions about the origin of sounds. For exam-
ple, sudden movement co-occurring with a cough detected in au-
dio could be a strong indicator that the cough was produced by the
user.

5 RELATEDWORK
Many studies have used smartphones for monitoring. Crosscheck
[16] for example, uses a smartphone tomonitor patientswith schizophre-
nia. They record audio amplitude (not raw audio), accelerometer,
location information, application usage andAndroid’s Activity recog-
nition API to track symptoms related to schizophrenia. Using a
similar platform, StudentLife [17] monitors student mental health
and educational outcomes and SmartGPA [18] predicts student’s
GPA from smartphone sensor data. These works show that smart-
phone sensor data can be used for a plethora of monitoring tasks.
There are benefits and drawbacks to using smartwatches instead of
smartphones. A smartwatch ismore likely to be consistently on the
users whereas a smartphone may be in a pocket, purse, backpack
or table. The location of the device can hinder the interpretation of
sensor data. For example, a microphone on the wrist is less likely
to be muffled than a microphone in a pocket or backpack. On the
downside, smartwatches have less computational power, reduced
battery sizes and more limited connectivity. Additionally, while
a smartwatch may produce more usable data, some data from a
smartphone may be of higher quality. For example, during a phone
call users are speaking directly into the smartphone resulting in
more speech and less noise.

A study by Kalantarian and Sarrafzadeh [7] uses smartwatches
to differentiate eating, chewing and speaking.Their audio is record-
ing in a lab setting and because they are interested in eating events,
audio is recorded when subjects are eating and the smartwatch
is inches from the subject’s mouth. Additionally, their audio is
recorded in a lab environment, with noise from a mall edited in
after the initial recording. Our study takes place in a completely
uncontrolled environment which gives us a better representation
of real-world audio.

6 CONCLUSION
After deploying a smartwatch based sensing application with real
patients, we find that the smartwatch microphone is good enough
to pick up speech and respiratory sounds. However, extracting
these sounds automatically is difficult because real-world audio
contains a wide variety of noise and because a surprising propor-
tion of these sounds do not originate from the patient. We found
that existing VAD and cough detection tools have poor accuracy
when applied to smartwatch based audio and that more work is
needed in filtering out the noise seen in real-world data and to de-
termine whether sounds originate from the user.
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